Towards high-resolution synchrotron radiation imaging with statistical iterative reconstruction.

نویسندگان

  • Essam A Rashed
  • Hiroyuki Kudo
چکیده

Synchrotron radiation (SR) X-ray micro-computed tomography (CT) is an effective imaging modality for high-resolution investigation of small objects, with several applications in medicine, biology and industry. However, the limited size of the detector field of view (FOV) restricts the sample dimensions to only a few millimeters. When the sample size is larger than the FOV, images reconstructed using conventional methods suffer from DC-shift and low-frequency artifacts. This classical problem is known as the local tomography or the interior problem. In this paper, a statistical iterative reconstruction method is introduced to eliminate image artifacts resulting from the local tomography. The proposed method, which can be used in several SR imaging applications, enables high-resolution SR imaging with superior image quality compared with conventional methods. Real data obtained from different SR micro-CT applications are used to evaluate the proposed method. Results indicate a noteworthy quality improvement in the image reconstructed from the local tomography measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study.

OBJECTIVE The purpose of this study was to evaluate the image noise, low-contrast resolution, image quality, and spatial resolution of adaptive statistical iterative reconstruction in low-dose body CT. MATERIALS AND METHODS Adaptive statistical iterative reconstruction was used to scan the American College of Radiology phantom at the American College of Radiology reference value and at one-ha...

متن کامل

Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework

Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT.  In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...

متن کامل

Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis.

PURPOSE Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means of overcome these challenges is statistical iterative reconstruct...

متن کامل

Temporal Bone CT: Improved Image Quality and Potential for Decreased Radiation Dose Using an Ultra-High-Resolution Scan Mode with an Iterative Reconstruction Algorithm.

BACKGROUND AND PURPOSE Radiation dose in temporal bone CT imaging can be high due to the requirement of high spatial resolution. In this study, we assessed whether CT imaging of the temporal bone by using an ultra-high-resolution scan mode combined with iterative reconstruction provides higher spatial resolution and lower image noise than a z-axis ultra-high-resolution mode. MATERIALS AND MET...

متن کامل

Fast projection/backprojection and incremental methods applied to synchrotron light tomographic reconstruction.

Iterative methods for tomographic image reconstruction have the computational cost of each iteration dominated by the computation of the (back)projection operator, which take roughly O(N3) floating point operations (flops) for N × N pixels images. Furthermore, classical iterative algorithms may take too many iterations in order to achieve acceptable images, thereby making the use of these techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of synchrotron radiation

دوره 20 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013